A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers

oleh: Satoshi Okawa, Sarah Nicklas, Sascha Zickenrott, Jens C. Schwamborn, Antonio del Sol

Format: Article
Diterbitkan: Elsevier 2016-09-01

Deskripsi

Identification of cell-fate determinants for directing stem cell differentiation remains a challenge. Moreover, little is known about how cell-fate determinants are regulated in functionally important subnetworks in large gene-regulatory networks (i.e., GRN motifs). Here we propose a model of stem cell differentiation in which cell-fate determinants work synergistically to determine different cellular identities, and reside in a class of GRN motifs known as feedback loops. Based on this model, we develop a computational method that can systematically predict cell-fate determinants and their GRN motifs. The method was able to recapitulate experimentally validated cell-fate determinants, and validation of two predicted cell-fate determinants confirmed that overexpression of ESR1 and RUNX2 in mouse neural stem cells induces neuronal and astrocyte differentiation, respectively. Thus, the presented GRN-based model of stem cell differentiation and computational method can guide differentiation experiments in stem cell research and regenerative medicine.