The strong 3-rainbow index of edge-comb product of a path and a connected graph

oleh: Zata Yumni Awanis, A.N.M. Salman, Suhadi Wido Saputro

Format: Article
Diterbitkan: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2022-03-01

Deskripsi

<span>Let </span><span class="math inline"><em>G</em></span><span> be a connected and edge-colored graph of order </span><span class="math inline"><em>n</em></span><span>, where adjacent edges may be colored the same. A tree in </span><span class="math inline"><em>G</em></span><span> is a rainbow tree if all of its edges have distinct colors. Let </span><span class="math inline"><em>k</em></span><span> be an integer with </span><span class="math inline">2 ≤ <em>k</em> ≤ <em>n</em></span><span>. The minimum number of colors needed in an edge coloring of </span><span class="math inline"><em>G</em></span><span> such that there exists a rainbow tree connecting </span><span class="math inline"><em>S</em></span><span> with minimum size for every </span><span class="math inline"><em>k</em></span><span>-subset </span><span class="math inline"><em>S</em></span><span> of </span><span class="math inline"><em>V</em>(<em>G</em>)</span><span> is called the strong </span><span class="math inline"><em>k</em></span><span>-rainbow index of </span><span class="math inline"><em>G</em></span><span>, denoted by </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub><em>k</em></sub>(<em>G</em>)</span><span>. In this paper, we study the </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub></span><span> of edge-comb product of a path and a connected graph, denoted by </span><span class="math inline"><em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em></span><span>. It is clearly that </span><span class="math inline">|<em>E</em>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)|</span><span> is the trivial upper bound for </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)</span><span>. Therefore, in this paper, we first characterize connected graphs </span><span class="math inline"><em>H</em></span><span> with </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)=|<em>E</em>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)|</span><span>, then provide a sharp upper bound for </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)</span><span> where </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)≠|<em>E</em>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)|</span><span>. We also provide the exact value of </span><span class="math inline"><em>s</em><em>r</em><em>x</em><sub>3</sub>(<em>P</em><sub><em>n</em></sub><sup><em>o</em></sup>⊳<sub><em>e</em></sub><em>H</em>)</span><span> for some connected graphs </span><span class="math inline"><em>H</em></span><span>.</span>