Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Combined Impact of Heart Rate Sensor Placements with Respiratory Rate and Minute Ventilation on Oxygen Uptake Prediction
oleh: Zhihui Lu, Junchao Yang, Kuan Tao, Xiangxin Li, Haoqi Xu, Junqiang Qiu
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-08-01 |
Deskripsi
Oxygen uptake (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>) is an essential metric for evaluating cardiopulmonary health and athletic performance, which can barely be directly measured. Heart rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula>) is a prominent physiological indicator correlated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> and is often used for indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction. This study investigates the impact of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> placement on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction accuracy by analyzing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> data combined with the respiratory rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi><mi>S</mi><mi>P</mi></mrow></semantics></math></inline-formula>) and minute ventilation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><mi>E</mi></mrow></semantics></math></inline-formula>) from three anatomical locations: the chest; arm; and wrist. Twenty-eight healthy adults participated in incremental and constant workload cycling tests at various intensities. Data on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi><mi>S</mi><mi>P</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><mi>E</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> were collected and used to develop a neural network model for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction. The influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> position on prediction accuracy was assessed via Bland–Altman plots, and model performance was evaluated by mean absolute error (MAE), coefficient of determination (R<sup>2</sup>), and mean absolute percentage error (MAPE). Our findings indicate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> combined with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi><mi>S</mi><mi>P</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><mi>E</mi></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn><mi mathvariant="normal">H</mi><mi mathvariant="normal">R</mi><mo>+</mo><mi mathvariant="normal">R</mi><mi mathvariant="normal">E</mi><mi mathvariant="normal">S</mi><mi mathvariant="normal">P</mi><mo>+</mo><mover accent="true"><mrow><mi mathvariant="normal">V</mi></mrow><mo>˙</mo></mover><mi mathvariant="normal">E</mi></mrow></msub></mrow></semantics></math></inline-formula>) produces the most accurate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> predictions (MAE: 165 mL/min, R<sup>2</sup>: 0.87, MAPE: 15.91%). Notably, as exercise intensity increases, the accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction decreases, particularly within high-intensity exercise. The substitution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> with different anatomical sites significantly impacts <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction accuracy, with wrist placement showing a more profound effect compared to arm placement. In conclusion, this study underscores the importance of considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>R</mi></mrow></semantics></math></inline-formula> placement in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> prediction models, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi><mi>S</mi><mi>P</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><mi>E</mi></mrow></semantics></math></inline-formula> serving as effective compensatory factors. These findings contribute to refining indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> estimation methods, enhancing their predictive capabilities across different exercise intensities and anatomical placements.