Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China
oleh: Sicong He, Heng Dong, Zili Zhang, Yanbin Yuan
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-06-01 |
Deskripsi
NO<sub>2</sub> (nitrogen dioxide) is a common pollutant in the atmosphere that can have serious adverse effects on the health of residents. However, the existing satellite and ground observation methods are not enough to effectively monitor the spatiotemporal heterogeneity of near-surface NO<sub>2</sub> concentrations, which limits the development of pollutant remediation work and medical health research. Based on TROPOMI-NO<sub>2</sub> tropospheric column concentration data, supplemented by meteorological data, atmospheric condition reanalysis data and other geographic parameters, combined with classic machine learning models and deep learning networks, we constructed an ensemble model that achieved a daily average near-surface NO<sub>2</sub> of 0.03° exposure. In this article, a meteorological hysteretic effects term and a spatiotemporal term were designed, which considerably improved the performance of the model. Overall, our ensemble model performed better, with a 10-fold CV <i>R</i><sup>2</sup> of 0.89, an RMSE of 5.62 µg/m<sup>3</sup>, and an MAE of 4.04 µg/m<sup>3</sup>. The model also had good temporal and spatial generalization capability, with a temporal prediction <i>R</i><sup>2</sup> and a spatial prediction <i>R</i><sup>2</sup> of 0.71 and 0.81, respectively, which can be applied to a wider range of time and space. Finally, we used an ensemble model to estimate the spatiotemporal distribution of NO<sub>2</sub> in a coastal region of southeastern China from May 2018 to December 2020. Compared with satellite observations, the model output results showed richer details of the spatiotemporal heterogeneity of NO<sub>2</sub> concentrations. Due to the advantages of using multi-source data, this model framework has the potential to output products with a higher spatial resolution and can provide a reference for downscaling work on other pollutants.