Origins and characterization of CO and O<sub>3</sub> in the African upper troposphere

oleh: V. Lannuque, V. Lannuque, B. Sauvage, B. Barret, H. Clark, G. Athier, D. Boulanger, J.-P. Cammas, J.-M. Cousin, A. Fontaine, E. Le Flochmoën, P. Nédélec, H. Petetin, I. Pfaffenzeller, S. Rohs, H. G. J. Smit, P. Wolff, V. Thouret

Format: Article
Diterbitkan: Copernicus Publications 2021-10-01

Deskripsi

<p>Between December 2005 and 2013, the In-service Aircraft for a Global Observing System (IAGOS) program produced almost daily in situ measurements of CO and <span class="inline-formula">O<sub>3</sub></span> between Europe and southern Africa. IAGOS data combined with measurements from the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the Metop-A satellite (2008–2013) are used to characterize meridional distributions and seasonality of CO and <span class="inline-formula">O<sub>3</sub></span> in the African upper troposphere (UT). The FLEXPART particle dispersion model and the SOFT-IO model which combines the FLEXPART model with CO emission inventories are used to explore the sources and origins of the observed transects of CO and <span class="inline-formula">O<sub>3</sub></span>.</p> <p>We focus our analysis on two main seasons: December to March (DJFM) and June to October (JJASO). These seasons have been defined according to the position of Intertropical Convergence Zone (ITCZ), determined using in situ measurements from IAGOS. During both seasons, the UT CO meridional transects are characterized by maximum mixing ratios located 10<span class="inline-formula"><sup>∘</sup></span> from the position of the ITCZ above the dry regions inside the hemisphere of the strongest Hadley cell (132 to 165 ppb at 0–5<span class="inline-formula"><sup>∘</sup></span> N in DJFM and 128 to 149 ppb at 3–7<span class="inline-formula"><sup>∘</sup></span> S in JJASO) and decreasing values southward and northward. The <span class="inline-formula">O<sub>3</sub></span> meridional transects are characterized by mixing ratio minima of <span class="inline-formula">∼42</span>–54 ppb at the ITCZ (10–16<span class="inline-formula"><sup>∘</sup></span> S in DJFM and 5–8<span class="inline-formula"><sup>∘</sup></span> N in JJASO) framed by local maxima (<span class="inline-formula">∼53</span>–71 ppb) coincident with the wind shear zones north and south of the ITCZ. <span class="inline-formula">O<sub>3</sub></span> gradients are strongest in the hemisphere of the strongest Hadley cell. IASI UT <span class="inline-formula">O<sub>3</sub></span> distributions in DJFM have revealed that the maxima are a part of a crescent-shaped <span class="inline-formula">O<sub>3</sub></span> plume above the Atlantic Ocean around the Gulf of Guinea.</p> <p>CO emitted at the surface is transported towards the ITCZ by the trade winds and then convectively uplifted. Once in the upper troposphere, CO-enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maximum CO mixing ratios are found. Anthropogenic and fires both contribute, by the same order of magnitude, to the CO budget of the African upper troposphere.</p> <p>Local fires have the highest contribution and drive the location of the observed UT CO maxima. Anthropogenic CO contribution is mostly from Africa during the entire year, with a low seasonal variability. There is also a large contribution from Asia in JJASO related to the fast convective uplift of polluted air masses in the Asian monsoon region which are further westward transported by the tropical easterly jet (TEJ) and the Asian monsoon anticyclone (AMA).</p> <p><span class="inline-formula">O<sub>3</sub></span> minima correspond to air masses that were recently uplifted from the surface where mixing ratios are low at the ITCZ. The <span class="inline-formula">O<sub>3</sub></span> maxima correspond to old high-altitude air<span id="page14536"/> masses uplifted from either local or long-distance area of high <span class="inline-formula">O<sub>3</sub></span> precursor emissions (Africa and South America during all the year, South Asia mainly in JJASO) and must be created during transport by photochemistry.</p>