Nonlinear wave evolution with data-driven breaking

oleh: D. Eeltink, H. Branger, C. Luneau, Y. He, A. Chabchoub, J. Kasparian, T. S. van den Bremer, T. P. Sapsis

Format: Article
Diterbitkan: Nature Portfolio 2022-04-01

Deskripsi

Wave breaking mechanisms relevant for modelling of ocean-atmosphere interaction and rogue waves, remain computationally challenging. The authors propose a machine learning framework for prediction of breaking and its effects on wave evolution that can be applied for forecasting of real world sea states.