Some Properties of Double Domination in Vague Graphs with an Application

oleh: Yongsheng Rao, Ruiqi Cai, Ali Asghar Talebi, Masomeh Mojahedfar

Format: Article
Diterbitkan: MDPI AG 2023-04-01

Deskripsi

This paper is devoted to the study of the double domination in vague graphs, and it is a contribution to the Special Issue “Advances in graph theory and Symmetry/Asymmetry” of Symmetry. Symmetry is one of the most important criteria that illustrate the structure and properties of fuzzy graphs. It has many applications in dominating sets and helps find a suitable place for construction. Vague graphs (VGs), which are a family of fuzzy graphs (FGs), are a well-organized and useful tool for capturing and resolving a range of real-world scenarios involving ambiguous data. In the graph theory, a dominating set (DS) for a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>*</mo></msup><mo>=</mo><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is a subset <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">D</mi></semantics></math></inline-formula> of the vertices <i>X</i> so that every vertex which is not in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">D</mi></semantics></math></inline-formula> is adjacent to at least one member of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">D</mi></semantics></math></inline-formula>. The subject of energy in graph theory is one of the most attractive topics serving a very important role in biological and chemical sciences. Hence, in this work, we express the notion of energy on a dominating vague graph (DVG) and also use the concept of energy in modeling problems related to DVGs. Moreover, we introduce a new notion of a double dominating vague graph (DDVG) and provide some examples to explain various concepts introduced. Finally, we present an application of energy on DVGs.