Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Efficient Framework for Sentiment Classification Using Apriori Based Feature Reduction
oleh: Achin Jain, Vanita Jain
| Format: | Article |
|---|---|
| Diterbitkan: | European Alliance for Innovation (EAI) 2021-06-01 |
Deskripsi
This paper proposes a novel feature selection method for Sentiment Classification. UCI ML Dataset is selected having a textual review from three domains (IMDB Movie, AMAZON Product, and YELP restaurant). Text pre -processing and feature selection technique is applied to the dataset. A Novel Feature Selection approach using Association Rule Mining is presented in which Sentence is converted in binary form and Apriori Algorithm is applied to reduce the dataset. Four Machine Learning algorithms: Naïve Bayes, Support Vector Machine, Random Forest & Logistic Regression to implement experiment. The proposed approach shows an accuracy improvement of 4.2%, 4.9% & 5.9% for IMDB, Amazon & Yelp domain datasets, respectively. Compared with the Genetic Algorithm, Principal Component Analysis, Chi-Square, and Relief based feature selection, the proposed method shows an accuracy improvement of 9.8%, 0.4%, 0.6% & 1.9%, respectively.