Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Preparation of photo-crosslinking carboxymethyl chitosan hydrogel for sustained drug release
oleh: HOU Bing-na, LI Jin, NI Kai, HAN Chao-yue, SHEN Hui-ling, ZHAO Lin-lin, LI Zheng-zheng
Format: | Article |
---|---|
Diterbitkan: | Journal of Materials Engineering 2020-11-01 |
Deskripsi
Carboxymethyl chitosan is an important chitosan derivative with good biocompatibility and degradability, and has a wide range of biomedical applications. In this study, water-soluble carboxymethyl chitosan derivative that can be photo-crosslinked by UV irradiation was synthesized. Methacrylated carboxymethyl chitosan (M-CMCS) was synthesized by N-methacrylation of carboxymethyl chitosan (CMCS). The chemical structures of M-CMCS were characterized by <sup>1</sup>H NMR and FT-IR. The M-CMCS hydrogels with different degrees of crosslinking was prepared by UV-triggered photo-crosslinking. The microscopic morphology, mechanical properties, swelling properties, enzymatic degradation properties and <i>in vitro</i> drug release behaviors of M-CMCS hydrogels were investigated by SEM, rheometer, and UV-Vis spectroscopy, respectively. The results show that the degree of methacrylation is gradually increased as the molar ratio of glycidyl methacrylate to carboxymethyl chitosan increases. M-CMCS hydrogels have the structure of high porosity and interconnected pores with the pore size of 1-20 <i>μ</i>m. The swelling ratio of M-CMCS hydrogels is decreased as the degree of crosslinking increases. M-CMCS hydrogel can be slowly degraded by lysozyme, and the degradation rate is decreased by increasing the degree of crosslinking. M-CMCS hydrogels show sustained release behavior for anticancer drug gemcitabine, and the drug release can be extended to 4 days. Photo-crosslinked M-CMCS hydrogels show great promise for drug release and tissue engineering.