Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Cluster Analysis Statistical Spectroscopy for the Identification of Metabolites in <sup>1</sup>H NMR Metabolomics
oleh: Silke S. Heinzmann, Melanie Waldenberger, Annette Peters, Philippe Schmitt-Kopplin
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-10-01 |
Deskripsi
Metabolite identification in non-targeted NMR-based metabolomics remains a challenge. While many peaks of frequently occurring metabolites are assigned, there is a high number of unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis. Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which gives important information on possible structural and/or biological correlations from the NMR spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a hypothesis, a full structural elucidation approach would be required. The approach allows a higher identification yield in NMR spectra, especially once pathway-related subclusters are identified.