Assessing the Impact of a Two-Layered Spherical Geometry of Phytoplankton Cells on the Bulk Backscattering Ratio of Marine Particulate Matter

oleh: Lucile DuforĂȘt-Gaurier, David Dessailly, William Moutier, Hubert Loisel

Format: Article
Diterbitkan: MDPI AG 2018-12-01

Deskripsi

The bulk backscattering ratio (<inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula>) is commonly used as a descriptor of the bulk real refractive index of the particulate assemblage in natural waters. Based on numerical simulations, we analyze the impact of modeled structural heterogeneity of phytoplankton cells on <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula>. <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula> is modeled considering viruses, heterotrophic bacteria, phytoplankton, organic detritus, and minerals. Three case studies are defined according to the relative abundance of the components. Two case studies represent typical situations in open ocean, oligotrophic waters, and phytoplankton bloom. The third case study is typical of coastal waters with the presence of minerals. Phytoplankton cells are modeled by a two-layered spherical geometry representing a chloroplast surrounding the cytoplasm. The <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula> values are higher when structural heterogeneity is considered because the contribution of coated spheres to light backscattering is higher than homogeneous spheres. The impact of heterogeneity is; however, strongly conditioned by the hyperbolic slope <inline-formula> <math display="inline"> <semantics> <mi>&#958;</mi> </semantics> </math> </inline-formula> of the particle size distribution. Even if the relative abundance of phytoplankton is small (&lt;1%), <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula> increases by about 58% (for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#958;</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula> and for oligotrophic waters), when the heterogeneity is taken into account, in comparison with a particulate population composed only of homogeneous spheres. As expected, heterogeneity has a much smaller impact (about 12% for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#958;</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math> </inline-formula>) on <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <msub> <mi>b</mi> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo stretchy="false">&#732;</mo> </mover> </semantics> </math> </inline-formula> in the presence of suspended minerals, whose increased light scattering overwhelms that of phytoplankton.