Analyzing Spatial Variations of Cloud Attenuation by a Network of All-Sky Imagers

oleh: Niklas Benedikt Blum, Stefan Wilbert, Bijan Nouri, Jonas Stührenberg, Jorge Enrique Lezaca Galeano, Thomas Schmidt, Detlev Heinemann, Thomas Vogt, Andreas Kazantzidis, Robert Pitz-Paal

Format: Article
Diterbitkan: MDPI AG 2022-11-01

Deskripsi

All-sky imagers (ASIs) can be used to model clouds and detect spatial variations of cloud attenuation. Such cloud modeling can support ASI-based nowcasting, upscaling of photovoltaic production and numeric weather predictions. A novel procedure is developed which uses a network of ASIs to model clouds and determine cloud attenuation more accurately over every location in the observed area, at a resolution of 50 m × 50 m. The approach combines images from neighboring ASIs which monitor the cloud scene from different perspectives. Areas covered by optically thick/intermediate/thin clouds are detected in the images of twelve ASIs and are transformed into maps of attenuation index. In areas monitored by multiple ASIs, an accuracy-weighted average combines the maps of attenuation index. An ASI observation’s local weight is calculated from its expected accuracy. Based on radiometer measurements, a probabilistic procedure derives a map of cloud attenuation from the combined map of attenuation index. Using two additional radiometers located 3.8 km west and south of the first radiometer, the ASI network’s estimations of direct normal (DNI) and global horizontal irradiance (GHI) are validated and benchmarked against estimations from an ASI pair and homogeneous persistence which uses a radiometer alone. The validation works without forecasted data, this way excluding sources of error which would be present in forecasting. The ASI network reduces errors notably (RMSD for DNI 136 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>, GHI 98 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) compared to the ASI pair (RMSD for DNI 173 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>, GHI 119 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> and radiometer alone (RMSD for DNI 213 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>), GHI 140 W/m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>). A notable reduction is found in all studied conditions, classified by irradiance variability. Thus, the ASI network detects spatial variations of cloud attenuation considerably more accurately than the state-of-the-art approaches in all atmospheric conditions.