Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Prediction and Global Sensitivity Analysis of Long-Term Deflections in Reinforced Concrete Flexural Structures Using Surrogate Models
oleh: Wenjiao Dan, Xinxin Yue, Min Yu, Tongjie Li, Jian Zhang
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2023-06-01 |
Deskripsi
Reinforced concrete (RC) is the result of a combination of steel reinforcing rods (which have high tensile) and concrete (which has high compressive strength). Additionally, the prediction of long-term deformations of RC flexural structures and the magnitude of the influence of the relevant material and geometric parameters are important for evaluating their serviceability and safety throughout their life cycles. Empirical methods for predicting the long-term deformation of RC structures are limited due to the difficulty of considering all the influencing factors. In this study, four popular surrogate models, i.e., polynomial chaos expansion (PCE), support vector regression (SVR), Kriging, and radial basis function (RBF), are used to predict the long-term deformation of RC structures. The surrogate models were developed and evaluated using RC simply supported beam examples, and experimental datasets were collected for comparison with common machine learning models (back propagation neural network (BP), multilayer perceptron (MLP), decision tree (DT) and linear regression (LR)). The models were tested using the statistical metrics <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">E</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">M</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">E</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">R</mi><mi mathvariant="normal">M</mi><mi mathvariant="normal">S</mi><mi mathvariant="normal">E</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">V</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">F</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">P</mi><mi mathvariant="normal">I</mi><mo>,</mo><mo> </mo><msub><mrow><mi mathvariant="normal">A</mi></mrow><mrow><mn>10</mn><mo>−</mo><mi mathvariant="normal">i</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">d</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">x</mi></mrow></msub><mo> </mo><mi mathvariant="normal">a</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">d</mi><mo> </mo><msub><mi mathvariant="normal">U</mi><mn>95</mn></msub></mrow></semantics></math></inline-formula>. The results show that all four proposed models can effectively predict the deformation of RC structures, with PCE and SVR having the best accuracy, followed by the Kriging model and RBF. Moreover, the prediction accuracy of the surrogate model is much lower than that of the empirical method and the machine learning model in terms of the RMSE. Furthermore, a global sensitivity analysis of the material and geometric parameters affecting structural deflection using PCE is proposed. It was found that the geometric parameters are more influential than the material parameters. Additionally, there is a coupling effect between material and geometric parameters that works together to influence the long-term deflection of RC structures.