Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review
oleh: D. Kishore Kumar, Jan Kříž, N. Bennett, Baixin Chen, H. Upadhayaya, Kakarla Raghava Reddy, Veera Sadhu
Format: | Article |
---|---|
Diterbitkan: | KeAi Communications Co., Ltd. 2020-01-01 |
Deskripsi
Dye-sensitized solar cells (DSSCs) are a next-generation photovoltaic energy conversion technology due to their low cost, ability to fabrication on various substrates, structural modifications, excellent transparency, photovoltaic output and its potential applications in wearable devices, energy sustainable buildings, solar-powered windows, etc. DSSC working devices consist of components such as conductive oxide substrates, photoanodes with wide bandgap semiconductors, dye molecules (sensitizers), counter electrodes and redox electrolytes, etc. High-efficiency DSSC devices can be fabricated suitable functionalization of semiconducting metal oxides with quantum dots, organic conjugated polymers, etc. In this review, we discuss different photovoltaic technologies, working principles of DSSCs, fabrication process of devices using various novel inorganic nanostructured materials, influencing parameters on the performance of DSC-device such as photoconversion efficiency (PCE), short circuit current (Jsc), open-circuit voltage (Voc) and fill factor (FF).