Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
T cell metabolic reprogramming in acute kidney injury and protection by glutamine blockade
oleh: Kyungho Lee, Elizabeth A. Thompson, Sepideh Gharaie, Chirag H. Patel, Johanna T. Kurzhagen, Phillip M. Pierorazio, Lois J. Arend, Ajit G. Thomas, Sanjeev Noel, Barbara S. Slusher, Hamid Rabb
| Format: | Article |
|---|---|
| Diterbitkan: | American Society for Clinical investigation 2023-06-01 |
Deskripsi
T cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57BL/6J mice and collected kidneys and spleens at multiple time points. T cells were isolated and analyzed by an immune-metabolic assay. Unbiased machine learning analyses identified a distinct T cell subset with reduced voltage-dependent anion channel 1 and mTOR expression in post-AKI kidneys. Ischemic kidneys showed higher expression of trimethylation of histone H3 lysine 27 and glutaminase. Splenic T cells from post-AKI mice had higher expression of glucose transporter 1, hexokinase II, and carnitine palmitoyltransferase 1a. Human nonischemic and ischemic kidney tissue displayed similar findings to mouse kidneys. Given a convergent role for glutamine in T cell metabolic pathways and the availability of a relatively safe glutamine antagonist, JHU083, effects on AKI were evaluated. JHU083 attenuated renal injury and reduced T cell activation and proliferation in ischemic and nephrotoxic AKI, whereas T cell–deficient mice were not protected by glutamine blockade. In vitro hypoxia demonstrated upregulation of glycolysis-related enzymes. T cells undergo metabolic reprogramming during AKI, and reconstitution of metabolism by targeting T cell glutamine pathway could be a promising novel therapeutic approach.