Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The 2-Adic Complexity of Ding-Helleseth Generalized Cyclotomic Sequences of Order 2 and Period <italic>pq</italic>
oleh: Tongjiang Yan, Ming Yan, Yuhua Sun, Shiwen Sun
Format: | Article |
---|---|
Diterbitkan: | IEEE 2020-01-01 |
Deskripsi
This paper considers the 2-adic complexity of Ding-Helleseth generalized cyclotomic sequences of order 2 and period <inline-formula> <tex-math notation="LaTeX">$pq$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> are distinct odd primes with <inline-formula> <tex-math notation="LaTeX">$\mathrm {gcd}(p-1,q-1)=2,p\equiv q\equiv 3\pmod 4$ </tex-math></inline-formula>. These sequences have been proved to possess good linear complexity. Our results show that the 2-adic complexity of these sequences is at least <inline-formula> <tex-math notation="LaTeX">$pq-q-1$ </tex-math></inline-formula>. Then it is large enough to resist the attack of the rational approximation algorithm.