Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes
oleh: Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, Fernando G.S.L. Brandão
Format: | Article |
---|---|
Diterbitkan: | American Physical Society 2022-02-01 |
Deskripsi
We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of measurements and gates, including cnot and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits, which are currently intractable for classical computers. Hardware with 18 000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.