Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
A Semiparametric Tilt Optimality Model
oleh: Chathurangi H. Pathiravasan, Bhaskar Bhattacharya
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-12-01 |
Deskripsi
Practitioners often face the situation of comparing any set of <i>k</i> distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.