Deformation of NaCoF<sub>3</sub> perovskite and post-perovskite up to 30&thinsp;GPa and 1013&thinsp;K: implications for plastic deformation and transformation mechanism

oleh: J. P. Gay, L. Miyagi, S. Couper, C. Langrand, D. P. Dobson, H.-P. Liermann, S. Merkel

Format: Article
Diterbitkan: Copernicus Publications 2021-09-01

Deskripsi

<p>Texture, plastic deformation, and phase transformation mechanisms in perovskite and post-perovskite are of general interest for our understanding of the Earth's mantle. Here, the perovskite analogue NaCoF<span class="inline-formula"><sub>3</sub></span> is deformed in a resistive-heated diamond anvil cell (DAC) up to 30 GPa and 1013 K. The in situ state of the sample, including crystal structure, stress, and texture, is monitored using X-ray diffraction. A phase transformation from a perovskite to a post-perovskite structure is observed between 20.1 and 26.1 GPa. Normalized stress drops by a factor of 3 during transformation as a result of transient weakening during the transformation. The perovskite phase initially develops a texture with a maximum at 100 and a strong 010 minimum in the inverse pole figure of the compression direction. Additionally, a secondary weaker 001 maximum is observed later during compression. Texture simulations indicate that the initial deformation of perovskite requires slip along (100) planes with significant contributions of <span class="inline-formula"><i>{</i>110<i>}</i></span> twins. Following the phase transition to post-perovskite, we observe a 010 maximum, which later evolves with compression. The transformation follows orientation relationships previously suggested where the <span class="inline-formula"><i>c</i></span> axis is preserved between phases and <span class="inline-formula"><i>h</i><i>h</i>0</span> vectors in reciprocal space of post-perovskite are parallel to [010] in perovskite, which indicates a martensitic-like transition mechanism. A comparison between past experiments on bridgmanite and current results indicates that NaCoF<span class="inline-formula"><sub>3</sub></span> is a good analogue to understand the development of microstructures within the Earth's mantle.</p>