Solitons Equipped with a Semi-Symmetric Metric Connection with Some Applications on Number Theory

oleh: Ali H. Hakami, Mohd. Danish Siddiqi, Aliya Naaz Siddiqui, Kamran Ahmad

Format: Article
Diterbitkan: MDPI AG 2023-10-01

Deskripsi

A solution to an evolution equation that evolves along symmetries of the equation is called a self-similar solution or soliton. In this manuscript, we present a study of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci solitons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RS) for an interesting manifold called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Kenmotsu manifold (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>M</mi></mrow></semantics></math></inline-formula>), endowed with a semi-symmetric metric connection (briefly, a SSM-connection). We discuss Ricci and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci solitons with a SSM-connection satisfying certain curvature restrictions. In addition, we consider the characteristics of the gradient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci solitons (a special case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton), with a Poisson equation on the same ambient manifold for a SSM-connection. In addition, we derive an inequality for the lower bound of gradient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci solitons for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Kenmotsu manifold, with a semi-symmetric metric connection. Finally, we explore a number theoretic approach in the form of Pontrygin numbers to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Kenmotsu manifold equipped with a semi-symmetric metric connection.