Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations

oleh: Muath Awadalla, Azhar Hussain, Farva Hafeez, Kinda Abuasbeh

Format: Article
Diterbitkan: MDPI AG 2023-01-01

Deskripsi

Navier–Stokes equations (NS-equations) are applied extensively for the study of various waves phenomena where the symmetries are involved. In this paper, we discuss the NS-equations with the time-fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. In fractional media, these equations can be utilized to recreate anomalous diffusion equations which can be used to construct symmetries. We examine the initial value problem involving the symmetric Stokes operator and gravitational force utilizing the Caputo fractional derivative. Additionally, we demonstrate the global and local mild solutions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>α</mi><mo>,</mo><mi>p</mi></mrow></msup></semantics></math></inline-formula>. We also demonstrate the regularity of classical solutions in such circumstances. An example is presented to demonstrate the reliability of our findings.