Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Comparison of quantitative trait loci methods: Total expression and allelic imbalance method in brain RNA-seq.
oleh: Jesper R Gådin, Alfonso Buil, Carlo Colantuoni, Andrew E Jaffe, Jacob Nielsen, Joo-Heon Shin, Thomas M Hyde, Joel E Kleinman, BrainSeq Consortium, Niels Plath, Per Eriksson, Søren Brunak, Michael Didriksen, Daniel R Weinberger, Lasse Folkersen
Format: | Article |
---|---|
Diterbitkan: | Public Library of Science (PLoS) 2019-01-01 |
Deskripsi
<h4>Background</h4>Of the 108 Schizophrenia (SZ) risk-loci discovered through genome-wide association studies (GWAS), 96 are not altering the sequence of any protein. Evidence linking non-coding risk-SNPs and genes may be established using expression quantitative trait loci (eQTL). However, other approaches such allelic expression quantitative trait loci (aeQTL) also may be of use.<h4>Methods</h4>We applied both the eQTL and aeQTL analysis to a biobank of deeply sequenced RNA from 680 dorso-lateral pre-frontal cortex (DLPFC) samples. For each of 340 genes proximal to the SZ risk-SNPs, we asked how much SNP-genotype affected total expression (eQTL), as well as how much the expression ratio between the two alleles differed from 1:1 as a consequence of the risk-SNP genotype (aeQTL).<h4>Results</h4>We analyzed overlap with comparable eQTL-findings: 16 of the 30 risk-SNPs known to have gene-level eQTL also had gene-level aeQTL effects. 6 of 21 risk-SNPs with known splice-eQTL had exon-aeQTL effects. 12 novel potential risk genes were identified with the aeQTL approach, while 55 tested SNP-pairs were found as eQTL but not aeQTL. Of the tested 108 loci we could find at least one gene to be associated with 21 of the risk-SNPs using gene-level aeQTL, and with an additional 18 risk-SNPs using exon-level aeQTL.<h4>Conclusion</h4>Our results suggest that the aeQTL strategy complements the eQTL approach to susceptibility gene identification.