Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Elucidation of Antiviral and Antioxidant Potential of C-Phycocyanin against HIV-1 Infection through <i>In Silico</i> and <i>In Vitro</i> Approaches
oleh: Pratiksha Jadaun, Chandrabhan Seniya, Sudhir Kumar Pal, Sanjit Kumar, Pramod Kumar, Vijay Nema, Smita S Kulkarni, Anupam Mukherjee
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-09-01 |
Deskripsi
Antiretroviral therapy is the single existing therapy for patients infected with HIV; however, it has drawbacks in terms of toxicity and resistance. Thus, there is a continuous need to explore safe and efficacious anti-retroviral agents. C-Phycocyanin (C-PC) is a phycobiliprotein, which has been known for various biological properties; however, its effect on HIV-1 replication needs revelation. This study aimed to identify the inhibitory effects of C-PC on HIV-1 using <i>in vitro</i> and <i>in silico</i> approaches and to assess its role in the generation of mitochondrial reactive oxygen species (ROS) during HIV-1 infection. <i>In vitro</i> anti-HIV-1 activity of C-PC was assessed on TZM-bl cells through luciferase gene assay against four different clades of HIV-1 strains in a dose-dependent manner. Results were confirmed in PBMCs, using the HIV-1 p24 antigen assay. Strong associations between C-PC and HIV-1 proteins were observed through <i>in silico</i> molecular simulation-based interactions, and the <i>in vitro</i> mechanistic study confirmed its target by inhibition of reverse transcriptase and protease enzymes. Additionally, the generation of mitochondrial ROS was detected by the MitoSOX and DCF-DA probe through confocal microscopy. Furthermore, our results confirmed that C-PC treatment notably subdued the fluorescence in the presence of the virus, thus reduction of ROS and the activation of caspase-3/7 in HIV-1-infected cells. Overall, our study suggests C-PC as a potent and broad <i>in vitro</i> antiviral and antioxidant agent against HIV-1 infection.