Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Fabrication and Development of Binder-Free Mn–Fe–S Mixed Metal Sulfide Loaded Ni-Foam as Electrode for the Asymmetric Coin Cell Supercapacitor Device
oleh: Jae Cheol Shin, Hee Kwon Yang, Jeong Seok Lee, Jong Hyuk Lee, Min Gyu Kang, Ein Kwon
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-09-01 |
Deskripsi
Currently, the fast growth and advancement in technologies demands promising supercapacitors, which urgently require a distinctive electrode material with unique structures and excellent electrochemical properties. Herein, binder-free manganese iron sulfide (Mn–Fe–S) nanostructures were deposited directly onto Ni-foam through a facile one-step electrodeposition route in potentiodynamic mode. The deposition cycles were varied to investigate the effect of surface morphologies on Mn–Fe–S. The optimized deposition cycles result in a fragmented porous nanofibrous structure, which was confirmed using Field Emission Scanning Electron Microscopy (FE−SEM). X-ray photoelectron spectroscopy (XPS) confirmed the presence of Mn, Fe, and S elements. The energy dispersive X-ray spectroscopy and elemental mapping revealed a good distribution of Mn, Fe, and S elements across the Ni-foam. The electrochemical performance confirms a high areal capacitance of 795.7 mF cm<sup>−2</sup> with a 24 μWh cm<sup>−2</sup> energy density calculated at a 2 mA cm<sup>−2</sup> current density for porous fragmented nanofiber Mn–Fe–S electrodes. The enhancement in capacitance is due to diffusive-controlled behavior dominating the capacitator, as shown by the charge–storage kinetics. Moreover, the assembled asymmetric coin cell device exhibited superior electrochemical performance with an acceptable cyclic performance of 78.7% for up to 95,000 consecutive cycles.