Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
A novel reinforced PLA locking compression plate to eliminate stress shielding using design for additive manufacturing
oleh: Abdulsalam A. Al-Tamimi, Mehdi Tlija, Abdullah Alhamidi, Mustufa Haider Abidi, Abdulrahman Al-Ahmari, Saeed M. Al-Zahrani
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2024-09-01 |
Deskripsi
Orthopaedic trauma is a predominant cause of patient mortality and prompt surgical interventions. The locking compression plate (LCP) is widely regarded as a gold standard in treating bone fractures. However, current fixation materials, such as 316 L stainless steel (316 L SS) and titanium (Ti) alloys induce stress shielding. A novel design approach is considered to design the next generation of bone plates to minimize stress shielding through design for additive manufacturing principles. Embedding of 316 L SS sheets within the bone plate structure has improved the mechanical properties by 200% compared with PLA-only plate, resulting in a flexural modulus of 9.3 GPa, which is closer to the cortical bone range of 10–25 GPa. In contrast, commercial plates measured 51 GPa for Ti and 112 GPa for 316 L SS. The novel plates showed to have a lower economic and environmental impact than commercial ones. Additively manufactured bone plates are more sustainable and cost-effective than current commercial ones.