Carbon Isotope Measurements to Determine the Turnover of Soil Organic Matter Fractions in a Temperate Forest Soil

oleh: Dóra Zacháry, Tibor Filep, Gergely Jakab, Mihály Molnár, Titanilla Kertész, Csilla Király, István Hegyi, Lilla Gáspár, Zoltán Szalai

Format: Article
Diterbitkan: MDPI AG 2020-12-01

Deskripsi

Soil organic matter (SOM) is a combination of materials having different origin and with different stabilization and decomposition processes. To determine the different SOM pools and their turnover rates, a silt loam-textured Luvisol from West Hungary was taken from the 0–20 cm soil depth and incubated for 163 days. Maize residues were added to the soil in order to obtain natural <sup>13</sup>C enrichment. Four different SOM fractions—particulate organic matter (POM), sand and stable aggregate (S + A), silt- plus clay-sized (s + c) and chemically resistant soil organic carbon (rSOC) fractions—were separated and analyzed using FT-IR, δ<sup>13</sup>C, and <sup>14</sup>C measurements. The mean residence time (MRT) of the new C and the proportion of maize-derived C in the fractions were calculated. The POM fraction was found to be the most labile C pool, as shown by the easily decomposable chemical structures (e.g., aliphatic, O-alkyl, and polysaccharides), the highest proportion (11.7 ± 2.5%) of maize-derived C, and an MRT of 3.6 years. The results revealed that the most stable fraction was the rSOC fraction which had the smallest proportion of maize-derived C (0.18 ± 2.5%) and the highest MRT (250 years), while it was the only fraction with a negative value of Δ<sup>14</sup>C (−75.0 ± 2.4‰). Overall, the study confirmed the hypothesis that the SOM associated with finer-sized soil particles decomposes the least, highlighting the significance of the fractionation process for more accurate determination of the decomposition processes of SOM pools.