Chaperone expression profiles correlate with distinct physiological states of <it>Plasmodium falciparum </it>in malaria patients

oleh: Pallavi Rani, Acharya Pragyan, Chandran Syama, Daily Johanna P, Tatu Utpal

Format: Article
Diterbitkan: BMC 2010-08-01

Deskripsi

<p>Abstract</p> <p>Background</p> <p>Molecular chaperones have been shown to be important in the growth of the malaria parasite <it>Plasmodium falciparum </it>and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones.</p> <p>Methods</p> <p>Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles.</p> <p>Results</p> <p>Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of <it>Plasmodium </it>export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte.</p> <p>Conclusion</p> <p>In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.</p>