Pharmacodynamic study of radium-223 in men with bone metastatic castration resistant prostate cancer.

oleh: Andrew J Armstrong, Santosh Gupta, Patrick Healy, Gabor Kemeny, Beth Leith, Michael R Zalutsky, Charles Spritzer, Catrin Davies, Colin Rothwell, Kathryn Ware, Jason A Somarelli, Kris Wood, Thomas Ribar, Paraskevi Giannakakou, Jiaren Zhang, Drew Gerber, Monika Anand, Wen-Chi Foo, Susan Halabi, Simon G Gregory, Daniel J George

Format: Article
Diterbitkan: Public Library of Science (PLoS) 2019-01-01

Deskripsi

<h4>Background</h4>Radium-223 is a targeted alpha-particle therapy that improves survival in men with metastatic castration resistant prostate cancer (mCRPC), particularly in men with elevated serum levels of bone alkaline phosphatase (B-ALP). We hypothesized that osteomimicry, a form of epithelial plasticity leading to an osteoblastic phenotype, may contribute to intralesional deposition of radium-223 and subsequent irradiation of the tumor microenvironment.<h4>Methods</h4>We conducted a pharmacodynamic study (NCT02204943) of radium-223 in men with bone mCRPC. Prior to and three and six months after radium-223 treatment initiation, we collected CTCs and metastatic biopsies for phenotypic characterization and CTC genomic analysis. The primary objective was to describe the impact of radium-223 on the prevalence of CTC B-ALP over time. We measured radium-223 decay products in tumor and surrounding normal bone during treatment. We validated genomic findings in a separate independent study of men with bone metastatic mCRPC (n = 45) and publicly accessible data of metastatic CRPC tissues.<h4>Results</h4>We enrolled 20 men with symptomatic bone predominant mCRPC and treated with radium-223. We observed greater radium-223 radioactivity levels in metastatic bone tumor containing biopsies compared with adjacent normal bone. We found evidence of persistent Cellsearch CTCs and B-ALP (+) CTCs in the majority of men over time during radium-223 therapy despite serum B-ALP normalization. We identified genomic gains in osteoblast mimicry genes including gains of ALPL, osteopontin, SPARC, OB-cadherin and loss of RUNX2, and validated genomic alterations or increased expression at the DNA and RNA level in an independent cohort of 45 men with bone-metastatic CRPC and in 150 metastatic biopsies from men with mCRPC.<h4>Conclusions</h4>Osteomimicry may contribute in part to the uptake of radium-223 within bone metastases and may thereby enhance the therapeutic benefit of this bone targeting radiotherapy.