Survey of Question Answering Based on Knowledge Graph Reasoning

oleh: SA Rina, LI Yanling, LIN Min

Format: Article
Diterbitkan: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 2022-08-01

Deskripsi

Knowledge graph question answering (KGQA) is based on analysis and understanding of questions and knowledge graph (KG) to obtain the answers. However, due to the complexity of natural language questions and the incompleteness of KG, the accuracy of answers can not be improved effectively. The knowledge graph reasoning technology can infer the missing entities in the KG and the implied relations between entities. Therefore, its application in KGQA can further improve the accuracy of answer prediction. In recent years, with the development of KGQA datasets and flexible application of knowledge graph reasoning technology, the development of the KGQA is greatly promoted. In this paper, question answering based on knowledge graph reasoning is summarized from three aspects. Firstly, this paper gives a brief overview of question answering based on knowledge graph reasoning, and introduces its challenges and related datasets. Secondly, this paper introduces the application of knowledge graph reasoning in open domain question answering, commonsense question answering and temporary knowledge question answering, and analyzes the advantages and disadvantages of each method. The open domain question answering methods are further summarized as graph embedding methods, deep learning methods and logic methods. Finally, this paper summarizes the work and prospects the future research in view of the current problems of question answering based on knowledge graph reasoning.