Food-Grade Quercetin-Loaded Nanoemulsion Ameliorates Effects Associated with Parkinson’s Disease and Cancer: Studies Employing a Transgenic <i>C. elegans</i> Model and Human Cancer Cell Lines

oleh: Sabya Sachi Das, Arunabh Sarkar, Siva Chander Chabattula, Priya Ranjan Prasad Verma, Aamir Nazir, Piyush Kumar Gupta, Janne Ruokolainen, Kavindra Kumar Kesari, Sandeep Kumar Singh

Format: Article
Diterbitkan: MDPI AG 2022-07-01

Deskripsi

A nanosized food-grade quercetin-loaded nanoemulsion (QNE) system comprising capmul MCM NF (oil) and cremophor RH 40 (surfactant) was developed using a high-speed homogenization technique. The developed QNE was studied for its significant neuroprotective (anti-Parkinsonism) and cytotoxicity (anticancer) effects against <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) strains and human cancer cells, respectively. HR-TEM studies revealed that the QNE was spherical with a mean globule size of ~50 nm. Selected area electron diffraction (SAED) studies results demonstrated that QNE was amorphous. In vivo results show that QNE potentially reduced the α-Syn aggregation, increased mitochondrial and fat content, and improved the lifespan in transgenic <i>C. elegans</i> strain NL5901. QNE significantly downregulated the reactive oxygen species (ROS) levels in wild-type <i>C. elegans</i> strain N2. In vitro results of the MTT assay show that QNE significantly exhibited chemotherapeutic effects in all treated human cancer cells in an order of cytotoxicity: HeLa cells > A549 cells > MIA PaCa-2 cells, based on the IC<sub>50</sub> values at 24 h. Conclusively, the QNE showed improved solubility, targetability, and neuroprotective effects against the PD-induced <i>C. elegans</i> model, and also cytotoxicity against human cancer cells and could be potentially used as an anti-Parkinson’s or anticancer agent.