Research on the Number of Solutions to a Special Type of Diophantine Equation (<i>a<sup>x</sup></i>−1)(<i>b<sup>y</sup></i>−1) = 2<i>z</i><sup>2</sup>

oleh: Shu-Hui Yang

Format: Article
Diterbitkan: MDPI AG 2023-05-01

Deskripsi

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> be an odd number. By using elementary methods, we prove that: (1) When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>x</mi></semantics></math></inline-formula> is an odd number and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>y</mi></semantics></math></inline-formula> is an even number, the Diophantine equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msup><mn>2</mn><mi>x</mi></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msup><mi>b</mi><mi>y</mi></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msup><mi>z</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> has no positive integer solution except when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>b</mi></semantics></math></inline-formula> is two special types of odd number. (2) When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>x</mi></semantics></math></inline-formula> is an odd number and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≡</mo><mo>±</mo><mn>3</mn><mo stretchy="false">(</mo><mi>mod</mi><mn>8</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, the Diophantine equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msup><mn>2</mn><mi>x</mi></msup><mo>−</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msup><mi>b</mi><mi>y</mi></msup><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><msup><mi>z</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> has no positive integer solution except where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> and is another special type of the odd number.