Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats.
oleh: Miyeon Choi, Sung Eun Wang, Seung Yeon Ko, Hyo Jung Kang, Seung Yeun Chae, Seung Hoon Lee, Yong-Seok Kim, Ronald S Duman, Hyeon Son
Format: | Article |
---|---|
Diterbitkan: | Public Library of Science (PLoS) 2014-01-01 |
Deskripsi
Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2) are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2) in the dentate gyrus (DG) of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.