Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Autoencoder based blind source separation for photoacoustic resolution enhancement
oleh: Matan Benyamin, Hadar Genish, Ran Califa, Lauren Wolbromsky, Michal Ganani, Zhen Wang, Shuyun Zhou, Zheng Xie, Zeev Zalevsky
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2020-12-01 |
Deskripsi
Abstract Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which methods based on localization of labels and particles, have been suggested, presenting promising but limited solutions. This work demonstrates a novel concept for extended-resolution imaging based on separation and localization of multiple sub-pixel absorbers, each characterized by a distinct acoustic response. Sparse autoencoder algorithm is used to blindly decompose the acoustic signal into its various sources and resolve sub-pixel features. This method can be used independently or as a combination with other super-resolution techniques to gain further resolution enhancement and may also be extended to other imaging schemes. In this paper, the general idea is presented in details and experimentally demonstrated.