Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Bromine speciation and partitioning in slab-derived aqueous fluids and silicate melts and implications for halogen transfer in subduction zones
oleh: M. Louvel, M. Louvel, C. Sanchez-Valle, W. J. Malfait, G. S. Pokrovski, C. N. Borca, D. Grolimund
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2020-07-01 |
Deskripsi
<p>Understanding the behavior of halogens (Cl, Br, and I) in subduction zones is critical to constrain the geochemical cycle of these volatiles and associated trace metals, as well as to quantify the halogen fluxes to the atmosphere via volcanic degassing. Here, the partitioning of bromine between coexisting aqueous fluids and hydrous granitic melts and its speciation in slab-derived fluids have been investigated in situ up to 840 <span class="inline-formula"><sup>∘</sup></span>C and 2.2 GPa by synchrotron x-ray fluorescence (SXRF) and x-ray absorption spectroscopy (XAS) in diamond anvil cells. The partition coefficients <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>D</mi><mrow class="chem"><mi mathvariant="normal">Br</mi></mrow><mrow><mi mathvariant="normal">f</mi><mo>/</mo><mi mathvariant="normal">m</mi></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="20pt" class="svg-formula" dspmath="mathimg" md5hash="1a6dde59dbd94d322c69d3092af548b0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1145-2020-ie00001.svg" width="24pt" height="20pt" src="se-11-1145-2020-ie00001.png"/></svg:svg></span></span> range from <span class="inline-formula">∼2</span> to <span class="inline-formula">∼15</span>, with an average value of <span class="inline-formula">6.7±3.6</span> (<span class="inline-formula">1<i>σ</i></span>) over the whole pressure–temperature (<span class="inline-formula"><i>P</i></span>–<span class="inline-formula"><i>T</i></span>) range, indicating a moderate Br enrichment in aqueous fluids, in agreement with previous work. Extended x-ray-absorption fine-structure (EXAFS) analysis further evidences a gradual evolution of Br speciation from hydrated Br ions [Br(<span class="inline-formula">H<sub>2</sub>O</span>)<span class="inline-formula"><sub>6</sub></span>]<span class="inline-formula"><sup>−</sup></span> in slab dehydration fluids to more complex structures involving both Na ions and water molecules, [<span class="inline-formula">BrNa<sub><i>x</i></sub>(H<sub>2</sub>O)<sub><i>y</i></sub></span>], in hydrous silicate melts and supercritical fluids released at greater depth (> 200 km). In denser fluids (<span class="inline-formula"><i>ρ</i></span> > 1.5 g cm<span class="inline-formula"><sup>−3</sup></span>) containing 60 wt % dissolved alkali–silicates and in hydrous <span class="inline-formula">Na<sub>2</sub>Si<sub>2</sub>O<sub>5</sub></span> melts (10 wt % <span class="inline-formula">H<sub>2</sub>O</span>), Br is found to be in a “salt-like” structure involving the six nearest Na ions and several next-nearest O neighbors that are either from water molecules and/or the silicate network. Bromine (and likely chlorine and iodine) complexing with alkalis is thus an efficient mechanism for the mobilization and transport of halogens by hydrous silicate melts and silica-rich supercritical fluids. Our results suggest that both shallow dehydration fluids and deeper silicate-bearing fluids efficiently remove halogens from the slab in the sub-arc region, thus favoring an efficient transfer of halogens across subduction zones.</p>