Entropy Generation Incorporating γ-Nanofluids under the Influence of Nonlinear Radiation with Mixed Convection

oleh: Umair Khan, Aurang Zaib, Ilyas Khan, Kottakkaran Sooppy Nisar

Format: Article
Diterbitkan: MDPI AG 2021-04-01

Deskripsi

Nanofluids offer the potential to improve heat transport performance. In light of this, the current exploration gives a numerical simulation of mixed convection flow (MCF) using an effective Prandtl model and comprising water- and ethylene-based <inline-formula>γ<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mi mathvariant="sans-serif">γ</mi><mo>−</mo><mi>Al</mi></mrow></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> particles over a stretched vertical sheet. The impacts of entropy along with non-linear radiation and viscous dissipation are analyzed. Experimentally based expressions of thermal conductivity as well as viscosity are utilized for <inline-formula>γ<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mi mathvariant="sans-serif">γ</mi><mo>−</mo><mi>Al</mi></mrow></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> nanoparticles. The governing boundary-layer equations are stimulated numerically utilizing bvp4c (boundary-value problem of fourth order). The outcomes involving flow parameter found for the temperature, velocity, heat transfer and drag force are conferred via graphs. It is determined from the obtained results that the temperature and velocity increase the function of the nanoparticle volume fraction for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><msub><mrow><mrow><mi mathvariant="normal">O</mi><mo>\</mo><mi mathvariant="normal">C</mi></mrow></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> based <inline-formula>γ<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mrow><mi mathvariant="sans-serif">γ</mi><mo>−</mo><mi>Al</mi></mrow></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> nanofluids. In addition, it is noted that the larger unsteady parameter results in a significant advancement in the heat transport and friction factor. Heat transfer performance in the fluid flow is also augmented with an upsurge in radiation.