Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Some identities involving generalized Gegenbauer polynomials
oleh: Zhaoxiang Zhang
Format: | Article |
---|---|
Diterbitkan: | SpringerOpen 2017-12-01 |
Deskripsi
Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$