Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta
oleh: J. Wang, J. Wang, J. Wang, H. Wang, H. Wang, H. Wang, Y. J. Tham, Y. J. Tham, L. Ming, Z. Zheng, Z. Zheng, G. Fang, C. Sun, C. Sun, C. Sun, Z. Ling, Z. Ling, Z. Ling, J. Zhao, J. Zhao, J. Zhao, S. Fan, S. Fan, S. Fan
Format: | Article |
---|---|
Diterbitkan: | Copernicus Publications 2024-01-01 |
Deskripsi
<p>The nitrate radical (NO<span class="inline-formula"><sub>3</sub></span>) is a critical nocturnal atmospheric oxidant in the troposphere, which widely affects the fate of air pollutants and regulates air quality. Many previous works have reported the chemistry of NO<span class="inline-formula"><sub>3</sub></span> in inland regions of China, while fewer studies target marine regions. Here, we present a field measurement of the NO<span class="inline-formula"><sub>3</sub></span> reservoir, dinitrogen pentoxide (N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span>), and related species at a typical marine site (Da Wan Shan Island) located in the South China Sea in the winter of 2021. Two patterns of air masses were captured during the campaign, including the dominant airmass from inland China (IAM) with a percentage of <span class="inline-formula">∼</span> 84 %, and the airmass from eastern coastal areas (CAM) with <span class="inline-formula">∼</span> 16 %. During the IAM period, the NO<span class="inline-formula"><sub>3</sub></span> production rate reached 1.6 <span class="inline-formula">±</span> 0.9 ppbv h<span class="inline-formula"><sup>−1</sup></span> due to the transportation of the polluted urban plume with high NO<span class="inline-formula"><sub><i>x</i></sub></span> and O<span class="inline-formula"><sub>3</sub></span>. The average nocturnal N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> and the calculated NO<span class="inline-formula"><sub>3</sub></span> mixing ratios were 119.5 <span class="inline-formula">±</span> 128.6 and 9.9 <span class="inline-formula">±</span> 12.5 pptv, respectively, and the steady-state lifetime of NO<span class="inline-formula"><sub>3</sub></span> was 0.5 <span class="inline-formula">±</span> 0.7 min on average, indicating intensive nighttime chemistry and rapid NO<span class="inline-formula"><sub>3</sub></span> loss at this site. By examining the reaction of NO<span class="inline-formula"><sub>3</sub></span> with volatile organic compounds (VOCs) and N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> heterogeneous hydrolysis, we revealed that these two reaction pathways were not responsible for the NO<span class="inline-formula"><sub>3</sub></span> loss (<span class="inline-formula"><i><</i></span> 20 %) since the NO<span class="inline-formula"><sub>3</sub></span> reactivity (<span class="inline-formula"><i>k</i></span>(NO<span class="inline-formula"><sub>3</sub>)</span>) towards VOCs was small (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5.2</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="94ffc44f9641ee4e070f864f704e2fb7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-977-2024-ie00001.svg" width="51pt" height="14pt" src="acp-24-977-2024-ie00001.png"/></svg:svg></span></span> s<span class="inline-formula"><sup>−1</sup></span>) and the aerosol loading was low. Instead, NO was proposed to significantly contribute to nocturnal NO<span class="inline-formula"><sub>3</sub></span> loss at this site, despite the nocturnal NO concentration always below the parts per billion by volume level and near the instrument detection limit. This might be from the local soil emission or something else. We infer that the nocturnal chemical NO<span class="inline-formula"><sub>3</sub></span> reactions would be largely enhanced once without NO emission in the open ocean after the air mass passes through this site, thus highlighting the strong influences of the urban outflow to the downwind marine areas in terms of nighttime chemistry. During the CAM period, nocturnal ozone was higher, while NO<span class="inline-formula"><sub><i>x</i></sub></span> was much lower. The NO<span class="inline-formula"><sub>3</sub></span> production was still very fast, with a rate of 1.2 ppbv h<span class="inline-formula"><sup>−1</sup></span>. With the absence of N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> measurement in this period, the NO<span class="inline-formula"><sub>3</sub></span> reactivity towards VOCs and N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> uptake were calculated to assess NO<span class="inline-formula"><sub>3</sub></span> loss processes. We showed that the average <span class="inline-formula"><i>k</i></span>(NO<span class="inline-formula"><sub>3</sub></span>) from VOCs (56.5 %, 2.6 <span class="inline-formula">±</span> 0.9 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span>) was higher than that from N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> uptake (43.5 %, 2.0 <span class="inline-formula">±</span> 1.5 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span>) during the CAM period, indicating a longer NO<span class="inline-formula"><sub>3</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M55" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab921b68c9e3b26bd3fdb564f7f7e866"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-977-2024-ie00002.svg" width="8pt" height="14pt" src="acp-24-977-2024-ie00002.png"/></svg:svg></span></span> N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> lifetime than that during IAM period. This study improves the understanding of the nocturnal NO<span class="inline-formula"><sub>3</sub></span> budget and environmental impacts with the interaction of anthropogenic and natural activities in marine regions.</p>