Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial–mesenchymal transition
oleh: Yue Yu, Wei Luo, Zheng-Jun Yang, Jiang-Rui Chi, Yun-Rui Li, Yu Ding, Jie Ge, Xin Wang, Xu-Chen Cao
Format: | Article |
---|---|
Diterbitkan: | BMC 2018-03-01 |
Deskripsi
Abstract Background Breast cancer is the most common cancer among women worldwide and metastasis is the leading cause of death among patients with breast cancer. The transforming growth factor-β (TGF-β) pathway plays critical roles during breast cancer epithelial–mesenchymal transition (EMT) and metastasis. SMAD2, a positive regulator of TGF-β signaling, promotes breast cancer metastasis through induction of EMT. Methods The expression of miR-190 and SMAD2 in breast cancer tissues, adjacent normal breast tissues and cell lines were determined by RT-qPCR. The protein expression levels and localization were analyzed by western blotting and immunofluorescence. ChIP and dual-luciferase report assays were used to validate the regulation of ZEB1-miR-190-SMAD2 axis. The effect of miR-190 on breast cancer progression was investigated both in vitro and in vivo. Results miR-190 down-regulation is required for TGF-β-induced EMT. miR-190 suppresses breast cancer metastasis both in vitro and in vivo by targeting SMAD2. miR-190 expression is down-regulated and inversely correlates with SMAD2 in breast cancer samples, and its expression level was associated with outcome in patients with breast cancer. Furthermore, miR-190 is transcriptionally regulated by ZEB1. Conclusions Our data uncover the ZEB1-miR-190-SMAD2 axis and provide a mechanism to explain the TGF-β network in breast cancer metastasis.