Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The minimum exponential atom-bond connectivity energy of trees
oleh: Gao Wei
Format: | Article |
---|---|
Diterbitkan: | De Gruyter 2024-01-01 |
Deskripsi
Let G=(V(G),E(G))G=\left(V\left(G),E\left(G)) be a graph of order nn. The exponential atom-bond connectivity matrix AeABC(G){A}_{{e}^{{\rm{ABC}}}}\left(G) of GG is an n×nn\times n matrix whose (i,j)\left(i,j)-entry is equal to ed(vi)+d(vj)−2d(vi)d(vj){e}^{\sqrt{\tfrac{d\left({v}_{i})+d\left({v}_{j})-2}{d\left({v}_{i})d\left({v}_{j})}}} if vivj∈E(G){v}_{i}{v}_{j}\in E\left(G), and 0 otherwise. The exponential atom-bond connectivity energy of GG is the sum of the absolute values of all eigenvalues of the matrix AeABC(G){A}_{{e}^{{\rm{ABC}}}}\left(G). It is proved that among all trees of order nn, the star Sn{S}_{n} is the unique tree with the minimum exponential atom-bond connectivity energy.