Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Graphene Quantum Dots Open Up New Prospects for Interfacial Modifying in Graphene/Silicon Schottky Barrier Solar Cell
oleh: Chao Geng, Xiuhua Chen, Shaoyuan Li, Zhao Ding, Wenhui Ma, Jiajia Qiu, Qidi Wang, Chang Yan, Hua-jun Fan
| Format: | Article |
|---|---|
| Diterbitkan: | American Association for the Advancement of Science (AAAS) 2021-01-01 |
Deskripsi
Graphene/silicon (Gr/Si) Schottky barrier solar cells (SBSCs) are attractive for harvesting solar energy and have been gaining grounds for its low-cost solution-processing. The interfacial barrier between graphene and silicon facilitates the reducing excessive carrier recombination while accelerating the separation processes of photo-generated carriers at the interface, which empowers the performance of Gr/Si SBSCs. However, the difficulty to control the interface thickness prevents its application. Here, we introduce the graphene oxide quantum dots (GOQDs) as a unique interfacial modulation species with tunable thickness by controlling the GOQDs particle size. The power conversion efficiency (PCE) of 13.67% for Gr/Si-based SBSC with outstanding stability in the air is obtained with the optimal barrier thickness (26 nm) and particle size (4.15 nm) of GOQDs. The GOQDs in Gr/Si-based SBSCs provide the extra band bending which further enhances the PCE for its photovoltaic applications.