Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Impact of Sea Ice Cover on Microbial Communities in Antarctic Shelf Sediments
oleh: Marwa Baloza, Susann Henkel, Sabine Kasten, Moritz Holtappels, Massimiliano Molari
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-06-01 |
Deskripsi
The area around the Antarctic Peninsula (AP) is facing rapid climatic and environmental changes, with so far unknown impacts on the benthic microbial communities of the continental shelves. In this study, we investigated the impact of contrasting sea ice cover on microbial community compositions in surface sediments from five stations along the eastern shelf of the AP using 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods are characterized by a prevailing ferruginous zone, whereas a comparatively broad upper oxic zone is present at the heavily ice-covered station. Low ice cover stations were highly dominated by microbial communities of <i>Desulfobacterota</i> (mostly <i>Sva1033</i>, <i>Desulfobacteria</i>, and <i>Desulfobulbia</i>), <i>Myxococcota</i>, and <i>Sva0485</i>, whereas <i>Gammaproteobacteria</i>, <i>Alphaproteobacteria</i>, <i>Bacteroidota</i>, and <i>NB1-j</i> prevail at the heavy ice cover station. In the ferruginous zone, <i>Sva1033</i> was the dominant member of Desulfuromonadales for all stations and, along with eleven other taxa, showed significant positive correlations with dissolved Fe concentrations, suggesting a significant role in iron reduction or an ecological relationship with iron reducers. Our results indicate that sea ice cover and its effect on organic carbon fluxes are the major drivers for changes in benthic microbial communities, favoring potential iron reducers at stations with increased organic matter fluxes.