Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Investigating the Potential Use of RADARSAT-2 and UAS imagery for Monitoring the Restoration of Peatlands
oleh: Lori White, Mark McGovern, Shari Hayne, Ridha Touzi, Jon Pasher, Jason Duffe
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2020-07-01 |
Deskripsi
The restoration of peatlands is critical to help reduce the effects of climate change and further prevent the loss of habitat for many species of flora and fauna. The objective of this research was to evaluate RADARSAT-2 satellite imagery and high-resolution Unmanned Aerial Systems (UASs) to determine if they could be used as surrogates for monitoring the success of peatland restoration. Areas of peatland that were being actively harvested, had been restored from past years (1994–2003), and natural shrub bog in Lac St. Jean, Quebec were used as a test case. We compared the Freeman–Durden and Touzi decompositions by applying the Bhattacharyya Distance (BD) statistic to see if the spectral signatures of restored peatland could be separated from harvested peat and natural shrub bog. We flew Unmanned Aerial Surveys (UASs) over the study site to identify <i>Sphagnum</i> and <i>Polytrichum strictum</i>, two indicator species of early peatland restoration success. Results showed that the Touzi decomposition was better able to separate the spectral signatures of harvested, restored, and natural shrub bog (BD values closer to 9). Symmetric scattering type αs1, Helicity |<i>τ</i><sub>1,2,3</sub>|, a steep incidence angle, and peak growing season appear to be important for separating the spectral signatures. We had moderate success in detecting <i>Sphagnum</i> and <i>Polytrichum strictum</i> visually by using texture and pattern but were unable to use colour due to differences in sun angle and clouds during the UAS flights. Results suggest that RADARSAT-2 data using the Touzi decomposition and UAS imagery show potential for monitoring peatland restoration success over time.