Exploring Crystal Structure, Hyperfine Parameters, and Magnetocaloric Effect in Iron-Rich Intermetallic Alloy with ThMn<sub>12</sub>-Type Structure: A Comprehensive Investigation Using Experimental and DFT Calculation

oleh: Jihed Horcheni, Hamdi Jaballah, Essebti Dhahri, Lotfi Bessais

Format: Article
Diterbitkan: MDPI AG 2023-11-01

Deskripsi

In this study, we give a thorough evaluation of the structural, magnetic, and magnetocaloric properties in iron-rich PrFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>11</mn></msub></semantics></math></inline-formula>Ti intermetallic alloy with ThMn<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>12</mn></msub></semantics></math></inline-formula>-type structure using a combination of experimental and theoretical analysis. X-ray diffraction coupled with Rietveld refinement was used to characterize the structure, which revealed a unique tetragonal crystal structure with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mn>4</mn><mo>/</mo><mi>m</mi><mi>m</mi><mi>m</mi></mrow></semantics></math></inline-formula> space group. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>i</mi></mrow></semantics></math></inline-formula> site was identified as the preferred site for the Ti atom. This finding was confirmed by various techniques, including XRD, DFT, and Mössbauer spectrometry. Magnetic properties were studied through intrinsic magnetic measurements and magnetocaloric effect analysis. Mössbauer spectroscopy was employed to probe the local magnetic environment and for further characterization of the material’s magnetic properties. The experimental results were complemented by theoretical calculations based on density functional theory (DFT). A promising magnetocaloric effect is observed, with a significant maximum magnetic entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></semantics></math></inline-formula> = 2.5 J·kg<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>·K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) and a relative cooling power about 70 J·kg<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> under low magnetic field change <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mn>0</mn></msub><mo>Δ</mo><mi>H</mi></mrow></semantics></math></inline-formula> = 1.5 T. Overall, our results provide a deeper understanding of the structural and magnetic properties of the material under study and demonstrate the effectiveness of the combined experimental and theoretical approach in the investigation of complex materials. The insights gained from this study could have implications for the development of advanced magnetic materials with enhanced properties for potential magnetic applications.