Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
2-(4-Nitrophenyl)isothiazol-3(2H)-one: A Promising Selective Agent against Hepatocellular Carcinoma Cells
oleh: Sofia Marka, Maria-Eleftheria Zografaki, Georgia Tsolomiti, Katerina I. Kalliampakou, Athanasios Tsolomitis, Christina Koumantou, Despina Smirlis, Niki Vassilaki, Spyros Kintzios
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-05-01 |
Deskripsi
Liver cancer ranks among the most prevalent malignancies globally and stands as a leading cause of cancer-related mortality. Numerous isothiazolone derivatives and analogues have been synthesized and investigated for their potential as anticancer agents; however, limited data exist regarding their efficacy against liver cancer. In the present study, two nitrophenyl-isothiazolones, the 5-benzoyl-2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoA) and the 2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoB), were preliminarily investigated for their cytotoxicity against hepatoma human (Huh7) cells as a liver cancer model and Immortalized Human Hepatocytes (IHHs) as a model of non-cancerous hepatocytes. IsoB, derived from IsoA after removal of the benzoyl moiety, demonstrated the highest cytotoxic effect against Huh7 cells with CC<sub>50</sub> values of 19.3 μΜ at 24 h, 16.4 μΜ at 48 h, and 16.2 μΜ at 72 h of incubation, respectively. IsoB also exhibited selective toxicity against the liver cancerous Huh7 cells compared to IHH cells, reinforcing its role as a potent and selective anticancer agent. Remarkably, the cytotoxicity of IsoB was higher when compared with the standard chemotherapeutical agent 5-fluorouracil (5-FU), which also failed to exhibit higher toxicity against the liver cancerous cell lines. Moreover, IsoB-treated Huh7 cells presented a noteworthy reduction in mitochondrial membrane potential (ΔΨm) after 48 and 72 h, while mitochondrial superoxide levels showed an increase after 24 h of incubation. The molecular mechanism of the IsoB cytotoxic effect was also investigated using RT-qPCR, revealing an apoptosis-mediated cell death along with tumor suppressor TP53 overexpression and key-oncogene MYCN downregulation.