Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Reduction of Markov Chains Using a Value-of-Information-Based Approach
oleh: Isaac J. Sledge, José C. PrÃncipe
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2019-03-01 |
Deskripsi
In this paper, we propose an approach to obtain reduced-order models of Markov chains. Our approach is composed of two information-theoretic processes. The first is a means of comparing pairs of stationary chains on different state spaces, which is done via the negative, modified Kullback–Leibler divergence defined on a model joint space. Model reduction is achieved by solving a value-of-information criterion with respect to this divergence. Optimizing the criterion leads to a probabilistic partitioning of the states in the high-order Markov chain. A single free parameter that emerges through the optimization process dictates both the partition uncertainty and the number of state groups. We provide a data-driven means of choosing the ‘optimal’ value of this free parameter, which sidesteps needing to a priori know the number of state groups in an arbitrary chain.