Inhibiting Monocyte Recruitment to Prevent the Pro-Tumoral Activity of Tumor-Associated Macrophages in Chondrosarcoma

oleh: Michele Minopoli, Sabrina Sarno, Gioconda Di Carluccio, Rosa Azzaro, Susan Costantini, Flavio Fazioli, Michele Gallo, Gaetano Apice, Lucia Cannella, Domenica Rea, Maria Patrizia Stoppelli, Diana Boraschi, Alfredo Budillon, Katia Scotlandi, Annarosaria De Chiara, Maria Vincenza Carriero

Format: Article
Diterbitkan: MDPI AG 2020-04-01

Deskripsi

Chondrosarcomas (CHS) are malignant cartilaginous neoplasms with diverse morphological features, characterized by resistance to chemo- and radiation therapies. In this study, we investigated the role of tumor-associated macrophages (TAM)s in tumor tissues from CHS patients by immunohistochemistry. Three-dimensional organotypic co-cultures were set up in order to evaluate the contribution of primary human CHS cells in driving an M2-like phenotype in monocyte-derived primary macrophages, and the capability of macrophages to promote growth and/or invasiveness of CHS cells. Finally, with an in vivo model of primary CHS cells engrafted in nude mice, we tested the ability of a potent peptide inhibitor of cell migration (Ac-<span style="font-variant: small-caps;">d</span>-Tyr-<span style="font-variant: small-caps;">d</span>-Arg-Aib-<span style="font-variant: small-caps;">d</span>-Arg-NH<sub>2</sub>, denoted RI-3) to reduce recruitment and infiltration of monocytes into CHS neoplastic lesions. We found a significant correlation between alternatively activated M2 macrophages and intratumor microvessel density in both conventional and dedifferentiated CHS human tissues, suggesting a link between TAM abundance and vascularization in CHS. In 3D and non-contact cu-culture models, soluble factors produced by CHS induced a M2-like phenotype in macrophages that, in turn, increased motility, invasion and matrix spreading of CHS cells. Finally, we present evidence that RI-3 successfully prevent both recruitment and infiltration of monocytes into CHS tissues, in nude mice.