Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Structural Investigation of Magnesium Complexes Supported by a Thiopyridyl Scorpionate Ligand
oleh: Matthew P. Stevens, Emily Spray, Iñigo J. Vitorica-Yrezabal, Kuldip Singh, Vanessa M. Timmermann, Lia Sotorrios, Fabrizio Ortu
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-07-01 |
Deskripsi
Herein, we report the synthesis of a series of heteroleptic magnesium complexes stabilized with the scorpionate ligand tris(2-pyridylthio)methanide (Tptm). The compounds of the general formula [Mg(Tptm)(X)] (<b>1-X</b>; X = Cl, Br, I) were obtained via protonolysis reaction between the proligand and selected Grignard reagents. Attempts to isolate the potassium derivative K(Tptm) lead to decomposition of Tptm and formation of the alkene (C<sub>5</sub>H<sub>4</sub>N-S)<sub>2</sub>C=C(C<sub>5</sub>H<sub>4</sub>N-S)<sub>2</sub>, and this degradation was also modelled using DFT methods. Compound <b>1-I</b> was treated with K(CH<sub>2</sub>Ph), affording the degradation product [Mg(Bptm)<sub>2</sub>] (<b>2</b>; Bptm = {CH(S-C<sub>5</sub>NH<sub>3</sub>)<sub>2</sub>}<sup>−</sup>). We analyzed and quantified the steric properties of the Tptm ligand using the structural information of the compounds obtained in this study paired with buried volume calculations, also adding the structural data of HTptm and its CF<sub>3</sub>-substituted congener (HTptm<sup>CF3</sup>). These studies highlight the highly flexible nature of this ligand scaffold and its ability to stabilize various coordination motifs and geometries, which is a highly desirable feature in the design of novel organometallic reagents and catalysts.