Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells

oleh: Gravanis Achilleas, Föller Michael, Konstantinidis Georgios, Anagnostopoulou Vasileia, Charalampopoulos Ioannis, Papadopoulou Natalia, Alevizopoulos Konstantinos, Lang Florian, Stournaras Christos

Format: Article
Diterbitkan: BMC 2008-12-01

Deskripsi

<p>Abstract</p> <p>Background</p> <p>Recently we have reported membrane androgen receptors-induced apoptotic regression of prostate cancer cells regulated by Rho/ROCK/actin signaling. In the present study we explored the specificity of these receptors and we analyzed downstream effectors controlling survival and apoptosis in hormone refractory DU145-prostate cancer cells stimulated with membrane androgen receptor-selective agonists.</p> <p>Results</p> <p>Using membrane impermeable conjugates of serum albumin covalently linked to testosterone, we show here down-regulation of the activity of pro-survival gene products, namely PI-3K/Akt and NF-κB, in DU145 cells. Testosterone-albumin conjugates further induced FasL expression. A FasL blocking peptide abrogated membrane androgen receptors-dependent apoptosis. In addition, testosterone-albumin conjugates increased caspase-3 and Bad protein activity. The actin cytoskeleton drug cytochalasin B and the ROCK inhibitor Y-27632 inhibited FasL induction and caspase-3 activation, indicating that the newly identified Rho/Rock/actin signaling may regulate the downstream pro-apoptotic effectors in DU145 cells. Finally, other steroids or steroid-albumin conjugates did not interfere with these receptors indicating testosterone specificity.</p> <p>Conclusion</p> <p>Collectively, our results provide novel mechanistic insights pointing to specific pro-apoptotic molecules controlling membrane androgen receptors-induced apoptotic regression of prostate cancer cells and corroborate previously published observations on the potential use of membrane androgen receptor-agonists as novel anti-tumor agents in prostate cancer.</p>