Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Semi-Empirical Mathematical Modeling, Energy and Exergy Analysis, and Textural Characteristics of Convectively Dried Plantain Banana Slices
oleh: Meenatai G. Kamble, Anurag Singh, Navneet Kumar, Rohini V. Dhenge, Massimiliano Rinaldi, Ajay V. Chinchkar
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-09-01 |
Deskripsi
Thin-layer convective drying of plantain banana was performed at four different temperatures from 50 to 80 °C, with slice thicknesses from 2 to 8 mm. The drying curves, fitted to seven different semi-empirical mathematical models, were successfully used to fit experimental data (<inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="normal">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> 0.72–0.99). The diffusion approach had better applicability in envisaging the moisture ratio at any time during the drying process, with the maximum correlation value (<inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="normal">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> 0.99) and minimum value of <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> (2<inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo> </mo><mrow><mi>to</mi><mo> </mo></mrow><mn>1.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and RMSE (5.0 <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo> </mo><mrow><mi>to</mi><mo> </mo></mrow><mn>1.2</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>h</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> values were calculated on the basis of the experimental data, and overall ranged from <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.11</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula> to <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.79</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></semantics></math></inline-formula> m<sup>2</sup> s<sup>−1</sup>, <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3.17</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></semantics></math></inline-formula> to 2.20 <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> m s<sup>−1</sup> and 13.70 to 18.23 kJ mol<sup>−1</sup>, respectively. The process energy consumption varied from 23.3 to 121.4 kWh kg<sup>−1</sup>. The correlation study showed that the drying temperature had a close correlation with <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>h</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> value and sample hardness. A significant (<i>p</i> < 0.05) increase in hardness of dried plantain banana was observed at 80 °C compared to the other temperatures. Additionally, the sample hardness and process energy consumption were more positively correlated with the thickness of the samples.