Synthesis, Characterization, and Anti-diabetic Activity of Some Novel Vanadium-Folate-Amino Acid Materials

oleh: Ahmed M. Naglah, Mohamed A. Al-Omar, Abdulrahman A. Almehizia, Ahmad J. Obaidullah, Mashooq A. Bhat, Atef Kalmouch, Asma S. Al-Wasidi, Jehan Y. Al-Humaidi, Moamen S. Refat

Format: Article
Diterbitkan: MDPI AG 2020-05-01

Deskripsi

A new six intraperitoneal injections insulin-mimetic vanadyl(IV) compounds [(VO)(FA)(AA<sub>n</sub>)] (where n = 1–6: AA<sub>1</sub> = isoleucine, AA<sub>2</sub> = threonine, AA<sub>3</sub> = proline, AA<sub>4</sub> = phenylalanine, AA<sub>5</sub> = lysine, and AA<sub>6</sub> = glutamine) were synthesized by the chemical reactions between folic acid (FA), VOSO<sub>4</sub>, and amino acids (AA<sub>n</sub>) with equal molar ratio 1:1:1 in neutralized media. These complexes were characterized by elemental analysis and estimation of vanadyl(IV) metal ions. The thermal stability behavior of these complexes was studied by TG-DTG-DTA analyses. The structures of these complexes were elucidated by spectroscopic methods like infrared, electron spin resonance (ESR), and solid reflectance spectroscopes. The powder X-ray diffraction (XRD) study suggested the crystalline nature of the complexes. Magnetic moments and electronic spectra revealed the square-pyramid geometrical structure of the complexes. The conductivity results refereed that all synthesized vanadyl(IV) complexes were of a non-electrolyte behavior. The infrared spectra assignments of these complexes revealed that the FAH<sub>2</sub> and AA<sub>n</sub> chelates act as a bidentate ligation. The chelation towards vanadyl (IV) ions existed via deprotonation of one of the carboxylic groups of FAH<sub>2</sub> drug ligand, and so amino acids act as bidentate ligands via N-amino and O-carboxylate groups. Both scanning and transmission electron microscope (SEM and TEM) techniques were used to investigate the surface morphology. The main task of this research is the aim of designing a new insulin alternative antidiabetic drug agent. The antidiabetic efficiency of these complexes was evaluated in streptozotocin-induced diabetic male albino rats. Liver and kidney functions, insulin and blood glucose levels, lipid profile, and superoxide dismutase antioxidant (SOD) are verified identifiers for the efficiency of VO(IV)/FA/AA<sub>n</sub> system compounds as antidiabetic drug agents.